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Introduction Lasso Regression

Background and Datasets

In our project, we make several references to the standard 
DP definitions [1] as well as some basic regression 
techniques already covered, namely linear regression.

Our code implementations of our DP techniques generates 
simple one-dimensional datasets to use as a common point 
of comparison for testing. In particular, we restrict X to N 
uniformly-generated points in the interval [−1, 1], and 
generate y according the equation y = X + e, where e ∼ N (0, 
σ2). Furthermore, y points are also winsorized to the interval 
[−1, 1]. To evaluate algorithm performance with variations 
in this data, we vary N and σ2.

Ridge Regression

Conclusions and Future Directions

Conclusion
• When working with 1D datasets, the lasso regression technique leads to 

noticeably more stable plots than the OLS results uncovered in class. Ridge 
regression, however, was not particularly helpful in this dataset, and 
bayesian regression struggled relatively more at lower N.

Future Directions
• We should expand to multi-dimensional datasets, to further explore the 

advantages of various regression techniques with DP.
• For ridge regression specifically, we should edit the specific parameters 

when generating 1D dataset to see if there is a scenario where a 
noticeable difference exists. 

• We could also try to implement other regression techniques, such as 
logistic and polynomial regression.

Next, we incorporated differential privacy mechanisms with ridge regression. When 
creating models to fit to data, ridge regression has proven especially useful in 
machine learning by adopting most of the elements of linear regression, while  
penalizing model coefficients that are relatively large in magnitude, ensuring that 
models aren't over fit to the training data that they're given. 

First, we implemented differentially private 
lasso regression with the simple dataset, 
basing our update steps off the Frank-Wolfe 
algorithm [2], specifically with T = 100 update 
steps, starting with an initial estimate of 0. 
We fixed σ2 = 0.02 and considered 
increments of N from 1000 to 5000 in steps 
of 100. For each value of N , 100 trials were 
performed. In each trial, the OLS and DP 
Lasso standard deviation and bias were 
calculated (recalling that the slope from the 
data- generating process was set to be 1), 
with the results displayed above.

The field of differential privacy (DP) offers a framework
where potentially-sensitive data can be analyzed in aggregate 
while limiting the information that can be known
about individual data entries. Work in the field has focused
on how DP techniques can be applied to a variety of
regression paradigms. 

Here, we visit three commonly-used and
different methods of linear regression applied to different 
datasets — ridge regression, lasso regression, and Bayesian 
regression—and provide a review of how each of these 
techniques has been modified to satisfy DP in academic 
literature. We also attempt code implementations for these 
regression techniques and evaluate their performance on 
simple datasets. Based on our efforts, we discuss practical 
considerations, challenges, and recommendations of the DP 
techniques.

The two previous techniques covered have operated under the frequentist 
interpretation of probability, so we decided to implement differentially 
private Bayesian regression to produce point estimates of θ. 

We set σ2 = 0.5, and generate four datasets, varying values
of N ∈ {10, 20, 50, 100}. The priors for the mean and variance on the slope is 
0 and 1, respectively. In the plots displayed below, each dataset is displayed 
as a scatter plot with the Bayesian linear regression approximations
overlaid. N = 10
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Conclusions
• The variance of Lasso estimates decreases as the number of data points increases, 

which may hint at convergence of the Lasso estimator under this DP technique. 
• The main conclusion of note, however, is that the bias is consistently negative (i.e.

values of 𝜃 are below 1.0), but decreases in magnitude as N increases.

True Slope = -1.0

The line representing the slope calculated using the raw data is displayed in blue, while the line 
representing the slope calculated using the “noise-naive” DP method is displayed in red. Shaded 
regions indicate plots for the 95% confidence intervals given the posterior variance for the slope 
values (i.e. the upper bound of the shaded region denotes the smallest slope value in the 
confidence interval, and similarly for the lower bound).
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Conclusions
• The width of the 95% confidence intervals in slope space decreases with N 
• The overall accuracy of the DP estimate approximates the raw estimate as N 

increases
• small N values are an issue - in the cases of N = 20 and N = 50, the noise 

added to small values of the posterior variance can result in slope ranges 
which do not capture the true slope of the data-generating process. 

After mimicking most of the same 
parameters as in our lasso regression 
tests, this time with a 0.02 penalizing 
parameter, we find that the results are 
not particularly different from the 
standard OLS results, indicating that 
either 1) our N is not large enough, or 2) 
our penalizing coefficient’s magnitude 
was too low to see a difference.


